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Abstract

Systems and control theory have found wide application in the analysis and design of numerical algorithms.

We present an equivalent discrete-time dynamical system interpretation of an algorithm commonly used in

information theory called Belief Propagation. Belief Propagation (BP) is one instance of the so-called Sum-

Product Algorithm and arises, e.g., in the context of iterative decoding of Low-Density Parity-Check codes.

We review a few known results from information theory in the language of dynamical systems and show

that the typically very high dimensional, nonlinear dynamical system corresponding to BP has interesting

structural properties. For the linear case we completely characterize the behavior of this dynamical system

in terms of its asymptotic input-output map. Finally, we state some of the open problems concerning BP

in terms of the dynamical system presented.
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1. Introduction

The application of systems and control theory techniques has illuminated many interesting properties

of iterative numerical methods. For example, viewing Newton’s method as a Lur’e-type system allowed the

derivation of novel stability criteria in [17]. Stability and convergence properties of numerical integration

routines have been studied in [28] and [17] and dynamical systems that solve optimization problems were

considered in [4]. Numerical integration and linear and quadratic programming are considered in [3] where it

is shown that many numerical methods can be interpreted as proportional-derivative or proportional-integral

controllers for certain dynamical systems. Control theoretic techniques are used to inform algorithm design

in [2], where simple control-Lyapunov functions lead to improved methods for finding zeros of nonlinear
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functions. Furthermore, dynamical systems appear quite naturally in connection with optimization prob-

lems [11], and it is not surprising that iterative algorithms from linear algebra can be studied from this

perspective [5, 9]. In this paper, we turn our attention to one of the most successful iterative algorithms in

digital communications —which is inherently nonlinear— and demonstrate that a control theoretic approach

provides important insights into its behavior.

Iterative algorithms are ubiquitous in state-of-the-art communications, especially in decoding of so-called

turbo and Low-Density Parity Check (LDPC) codes. The (re-)discovery of these forward error correction

codes was a major breakthrough in the 1990s as they approach Shannon’s channel capacity within a fraction

of a decibel, a milestone unachievable before. In the decoding context for LDPC codes, the so-called

Belief Propagation (BP) algorithm and its variants have attracted much attention [21, 23, 32] not only

in communications, but also in disciplines such as signal processing and machine learning. Variations of

BP have promising applications well beyond communications; e.g., in Kalman filtering and expectation

maximization [6, 7, 8, 23].

Although these algorithms usually work well, only limited theoretical insight is available today to explain

why. These algorithms admit fast parallel implementations to efficiently approximate solutions to so-called

marginalization problems [21, 22, 23]. In broad terms, marginalization can be —and most commonly is—

used to approximate a-posteriori densities, a task familiar from Kalman filtering [16]. In general, however,

it is unclear how close these approximations are to true marginals, or indeed whether these algorithms will

converge for any given input. In the decoding context as per the setup of Figure 4, the goal of this marginal-

ization problem is to calculate so-called maximum a-posteriori probabilities, based on a-priori probabilities

for bits received over a noisy channel. This makes the otherwise computationally very hard decoding task

feasible (in contrast to the inexpensive encoding task). Whilst these iterative algorithms have been rein-

vented many times and despite the wide area of existing and proposed applications, analysis and design

methods still rely mostly on Monte Carlo simulations, instead of exploiting system theoretic results for the

underlying highly structured dynamical system.

Although several authors have studied iterative decoding in a dynamical systems context, the underlying

high dimensional system equivalent to the particular algorithm has been avoided. In part, this may be due

to the fact that its dimension easily approaches the order 105 or more. It is known that iterative decoding

exhibits nonlinear dynamics. Previous work [1, 10, 19, 18, 20, 33] investigating the dynamics of iterative

decoding has involved examining lower dimensional models of the real dynamical system. These lower

dimensional models are derived in a stochastic setting and rely on concentration theorems made possible

by assuming, for instance, that the dimension of the underlying dynamical system tends to infinity. While

these previous approaches allow one to make statements about the behavior and performance of a “typical”

system from a particular class, verifying the design of a specific system still relies on large-scale Monte Carlo

simulations. Convergence criteria and uniqueness of fixed points for BP remains an active area of research
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[12, 14, 13, 24, 29, 30, 31].

This work is a first step away from such stochastic analysis where we study the full deterministic dynam-

ical system defining the BP algorithm. It turns out that this system has interesting symmetry properties.

Our contribution is to present and study a discrete-time nonlinear feedback dynamical system formulation

equivalent to the so-called Belief Propagation (BP) algorithm. Here equivalence is understood in the sense

that there is a one-to-one correspondence between trajectories of the dynamical system and the algorithm.

With its long history of studying dynamical systems and improving their behavior towards desired outcomes

using control strategies, we believe that the control community has much to offer to the understanding and

ultimate improvement of iterative algorithms and BP in particular.

Without assuming any information theoretic background we introduce the dynamical system of interest.

It is completely described by the so-called parity-check matrix and is essentially linear, up to one highly

structured nonlinearity. We provide some of the existing results in the information theory literature in the

language of deterministic dynamical systems. To illustrate the behavior of this system, we consider the

special case in which the BP algorithm defines a linear system; i.e., when the feedback nonlinearity becomes

linear. For this linear system, we can completely characterize the input-output behavior of BP.

The paper is organized as follows: Section 2 introduces the dynamical system central to this article.

Here we also comment on input-output stability and describe a rather surprising result from the information

theory literature, couched in the language of dynamical systems, related to the symmetry inherent in the

BP algorithm. In information theory, this result is known as the all-zero-codeword assumption. Here it

takes the form of a classification of the input-output sets. Then in Section 3 we consider the case when

the dynamical system is linear. In an information theory context, this special case corresponds to repeat

codes, which are the most easily understood error correction codes. In Section 4 we state some of the open

problems regarding BP, translated into the language of control systems. Finally we conclude in Section 5.

To make the paper self-contained, in the complementary Appendix we provide more of the coding theory

background to aid readers in “decoding” some of the coding literature.

2. The dynamical system of Belief Propagation

2.1. Definitions

Figure 1 shows the basic structure of the BP algorithm, formulated as a deterministic dynamical system

as in (5), see below. A motivation from a decoding perspective is given in Appendix A. All blocks except

the S-block are sparse and linear, and the nonlinearity S is highly structured and also sparse. All these

blocks are completely described in terms of one sparse matrix H and are entirely deterministic. Let N denote

the set of nonnegative integers. For a positive integer n we denote by n the set {1, . . . , n}. Throughout,
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F2 denotes the binary field2 with elements 0 and 1. Given a binary matrix H = (hij) ∈ Fm×n2 denote by

q := |H| the number of nonzero entries in H. Enumerating row-wise from left to right and starting with the

top row, let n(k) = nH(k) = (n1(k), n2(k)) denote the coordinates (i, j) ∈ m × n of the kth non-zero entry

in H, for k ∈ q. Let U denote the set of constant functions u from N to Rn. As usual we identify u ∈ U
with points u ∈ Rn.

Remark1. In practice, H is typically sparse, or in the terminology of information theory, has low density.

H is termed a (low-density) parity-check matrix, cf. Appendix A.2. Usually, m is of the order of R · n,

where R is the so-called design rate of the code described by H. Typical values include R = 1
2 or 1

3 . H is

called regular if every row has the same number of nonzero entries and every column has the same number

of nonzero entries. If these numbers, together with R, are kept fixed, q scales as O(n). Typical values

for n range between a few hundred to tens of thousands. To give an impression of the dimension of the

dynamical system that we are about to define, some reasonable example numbers are R = 1
2 , n = 20,000,

and m = 10,000, so that q would be of the order of 100,000.

Define the matrix B = BH = (bij) ∈ Rq×n by

bij =

1 if n2(i) = j

0 otherwise .
(1)

Define the maps S = SH : Rq → Rq and P = PH : Rq → Rq by

Pi(ξ) =
∑

j 6=i: n2(j)=n2(i)

ξj , and (2)

Si(ξ) = 2 atanh

 ∏
j 6=i: n1(j)=n1(i)

tanh
ξj
2

 (3)

for ξ ∈ Rq (cf. Appendix A.7 for background on the particular form of (2) and (3)). The operator P

can be represented as matrix-vector multiplication. With a slight abuse of notation we define the matrix

P = PH = (pij) ∈ Rq×q to be

pij =

1 if j 6= i, n2(i) = n2(j)

0 otherwise ,
(4)

2Addition and multiplication are given in the following tables. Sometimes addition is denoted by the symbol ⊕ instead of

+. It coincides with the XOR operation.

+ 0 1 · 0 1

0 0 1 0 0 0

1 1 0 1 0 1
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so that we have P (ξ) = Pξ for all ξ ∈ Rq. In Section 3 we explicitly construct these matrices for a specific

H.

In the following we will consider the time-invariant discrete-time dynamical system given by

x+
1 = Px2 +Bu

x+
2 = S(x1)

y = BTx2 + u ,

(5)

where x1, x2 ∈ Rq, u, y ∈ Rn. We write x = (xT1 , x
T
2 )T . The structure of system (5) is depicted in Figure 1.

In this work, we are only interested in input signals that are constant; i.e., u ∈ U . We do this because

we are interested in how the BP algorithm iteratively processes a single input, the predominant case in

applications. However, in the last section of the appendix we point out a case where it may be useful to

consider non-constant inputs.

The information theoretic interpretation of a zero-initial condition is to start with an internal state

of “zero knowledge”, which matches with the motivation of the algorithm, which we later describe in the

appendix. Also, as this dynamical system represents an algorithm implemented on a computer and not a

physical system, we may always choose this initial condition. Hence from now on we assume x(0) = 0.

The input is a vector of a-priori log-likelihoods. The output at each iteration is an approximation to the

a-posteriori log-likelihood vector. See the brief discussion in the next subsection or the appendix for a more

detailed account, especially Appendix A.7.

Associated with H is a bipartite graph, called the factor graph, cf. Appendix A.5: Each row of H defines

a factor node, each column a variable node. There is an edge between a factor and a variable node, if the

corresponding entry in H is one.

Denote the extended reals by R = R ∪ {±∞}. Given the dynamical system (5) we define its asymp-

totic input-output map to be the set valued mapping G : U → 2Rn

, u 7→
{
w ∈ Rn : y(tk, u) →

w for some {tk}k∈N as tk →∞
}

.

2.2. Results

The derivation of the sum-product algorithm (SPA) or, respectively, belief propagation (BP), is based

on an observation in the context of so-called marginalizations, cf. [21, 23, 26] or the appendix, which we

formulate here as a lemma.

Lemma 1. If the factor graph associated with H is a tree then for each input u ∈ U , system (5) converges

to a limit point in a finite number of steps. In particular, for the asymptotic input-output map we have

G(u) ∈ Rn for every u ∈ U .

In the tree case the asymptotic output (which is obtained after finitely many steps) yields the exact com-

putation of so-called marginals. This motivates why BP (or SPA) is used even in the case that the factor
5



graph contains cycles: One obtains only approximations to those marginals, but the hope is that these

approximations are in some sense good.

At this point we should remark that for system (5), x = 0, u = 0 gives y = 0 for all times. We have the

following stability property, which in particular implies a form of input-output stability of the origin.

Proposition 2. Assume that the factor graph associated to H is a tree. Then there exists a continuous,

non-decreasing function γ : R+ → R+, satisfying γ(0) = 0, such that

‖y(t, u)‖ ≤ γ(‖u‖), ∀t ≥ 0.

Proof. If the factor graph is a tree, by Lemma 1, BP converges in a finite number of steps, denote this

number by L. This number of steps L does not depend on the initial conditions or inputs, but only on the

girth of the tree. For every finite t ≥ 0, the mapping f : u 7→ y(t, u) is continuous and satisfies f(0) = 0.

Hence the function

γ(r) := max
u: ‖u‖≤r

max
t=0,...,L

‖y(t, u)‖

is continuous and non-decreasing. �

Concerning the interpretation of this result in a decoding context (cf. Appendix A.7), the inputs and

outputs represent vectors of log-likelihood ratios. A log-likelihood ratio r ∈ R has the following interpre-

tation: r = 0 denotes absolute uncertainty about whether a bit should be a zero or a one. Small non-zero

values for r denote a slight but uncertain preference to either zero (r > 0) or one (r < 0). Large values for

r, or even r = ±∞, denote strong confidence or certainty about the value of the corresponding bit. Hence

Proposition 2 says that when the inputs to the algorithm contain little or no knowledge about the vector

of bits, then this knowledge cannot be increased too much just by processing the available log-likelihood

vector.

The null space of H is a vector space (over F2) which we denote by NH . The elements of NH are called

codewords. Define the hard decision operator D : domD → Fn2 , by

Di(ξ) =

0 if ξi > 0

1 if ξi < 0 ,
(6)

where domD ⊂ Rq is the set {ξ ∈ Rq : ξi 6= 0∀i}.
For each c ∈ NH we let Yc ⊂ Rq denote the open set given by Yc := {ξ ∈ domD : D(ξ) = c} . The set

Yc is referred to as a codeword set. For fixed c ∈ NH we are interested in the set of inputs u ∈ U so that the

trajectory y(t, u) eventually reaches Yc. Denote these regions by

Rc = Rc,H = {u ∈ U : ∃t ≥ 0 : y(t, u) ∈ Yc} . (7)

Lemma 3. For each c ∈ NH , the codeword set Yc is invariant in the sense that Yc ⊂ Rc.
6



Proof. This is due to the output equation and the assumption, that our dynamical system always starts

at x(0) = 0. �

The following result is a reformulation of what is commonly known in communications as the all-zero

codeword assumption.

Theorem 4. For all c ∈ NH there exists a diagonal matrix T = T (c) ∈ Rq×q such that Rc = TR0, where

the diagonal elements of T are given by

tii =

−1 if cn2(i) = 1

+1 otherwise .

In other words, despite the fact that the BP algorithm is a nonlinear system, the regions Rc have the same

size and shape for all c ∈ NH . Hence, since 0 ∈ NH , coding theorists typically restrict their attention to the

all-zero codeword when analyzing a particular H. A proof of this result can be found in [26, p.215, Lemma

4.90].

3. Linear case

Consider the case as per the (n−1)×n matrix in (8), where each row of H contains exactly two non-zero

entries. Then the product term in (3) simplifies to tanh ξj

2 , where j 6= i. Thence, applying (3), Si(ξ) = ξj ,

for some j 6= i. That is, S is a permutation operator. Note that (8) is a canonical form for matrices with

two non-zero entries per row, provided that the factor graph is connected.

H =



1 1 0 . . . 0

0 1 1 0 . . . 0
...

. . . . . .
...

0 . . . 0 1 1 0

0 . . . 0 1 1


. (8)

The error correction code defined by the matrix H is the simplest error correction code available. Imagine

that we wish to transmit a binary value, 1 or 0, over a noisy communication channel. In an effort to make sure

the value is received reliably, instead of transmitting the value once, we may, for instance, transmit the value

three times. On the receiving end, we can then take a majority vote and, hopefully, be more confident that

we correctly received what was originally intended. Presumably, the more times we repeat the transmission

for a single bit message, the better the receiver’s chances of correctly guessing what was intended by the

transmitter. This scheme is referred to as a repeat-n code, where n is the number of transmitted bits. (More

detail on the communication process is contained in the Appendix.)
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Now since the map x 7→ 2 atanh(tanh(x/2)) is the identity, the operator S becomes linear and, again

with slight abuse of notation, can be represented by matrix-vector multiplication S(ξ) = Sξ with the matrix

S = SH = (sij) ∈ Rq×q given by

sij =

1 if n1(i) = n1(j)

0 else .
(9)

System (5) reduces to the linear system

x+ =

0 P

S 0

x+

B
0

u
y =

[
0 BT

]
x+ u .

(10)

Since the factor graph for any repeat code represented by a parity-check matrix of the form (8) is a tree ,

we have according to Lemma 1, for each u ∈ U an equilibrium point x∗ = x∗(u) satisfying

x∗ =

0 P

S 0

x∗ +

B
0

u . (11)

Lemma 5. The matrices

0 P

S 0

 and PS are nilpotent, and for k ≥ 0 the (i, j)th entry of (PS)k is given

by

((PS)k)ij =


1 if i is even and j = i+ 2k

or if i is odd and j = i− 2k

0 otherwise .

(12)

Proof. Induction over k for equation (12); then nilpotency follows. �

Now equation (11) can be rewritten to

x∗ =

 I −P
−S I

−1 B
0

u =
∞∑
k=0

0 P

S 0

k B
0

u . (13)

Using basic linear algebra we obtain

y∗ =
[
0 BT

] ∞∑
k=0

0 P

S 0

k

B

0

u+ u (14)

= BT
(
S
∑
k≥0

(PS)k
)
Bu+ u . (15)

From Lemma 5 it follows that the infinite sums in (13)–(15) consist of only finitely many nonzero terms.
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Example 1. Let

H =


11 12 0 0

0 13 14 0

0 0 15 16

 , (16)

which corresponds to a repeat-4 code. The superscripts indicate the enumeration n defined in Section 2. For

example, (n1(1), n2(1)) = (1, 1), (n1(2), n2(2)) = (1, 2), (n1(3), n2(3)) = (2, 2), and so on. For the repeat-4

code given above, we have B,S, and P given by, respectively,

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1


,



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0



and



0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0


.

Then the asymptotic input-output map is given by the matrix

BT
(
S
∑
k≥0

(PS)k
)
B + I =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 .

An example trajectory of the dynamical system corresponding to the parity-check matrix (16) is given in

Figure 3, where u = (1, 2, 3,−4)T .

The example provides the asymptotic input-output behavior of an iterative BP decoder for a repeat-4 code.

The interpretation of this result might seem odd at first, since instead of averaging the inputs and assigning

this average to every output, the sum of all inputs is assigned to every output. The explanation lies in

the representation of the input per-bit probabilities: ui represents a log-likelihood ratio, i.e., a number

of the form ui = log p
(i)
0

p
(i)
1

, where p(i)
0 + p

(i)
1 = 1 (cf. Appendix A.7). If we now compute the probability

that the first bit and the second bit and the third bit and so on are, say the zero bit, we compute a

product, r0 = p
(1)
0 p

(2)
0 p

(3)
0 · · · , and similarly, r1 = p

(1)
1 p

(2)
1 p

(3)
1 · · · . Now r = (r0, r1) in general will not satisfy
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r0 +r1 = 1, i.e., not represent a probability distribution, so that we would have to normalize to r̃ = 1
r0+r1

·r.
The log-likelihood ratio l = r0

r1
is not altered by this scaling, and it is this log-likelihood ratio that the

asymptotic input-output map assigns to every output.

Of course, this result generalizes easily to repeat-n codes.

Theorem 6. For a repeat-n code represented by a parity-check matrix H in canonical form (8), the asymp-

totic input-output-map G is given by G(u) = Eu, where E denotes the square matrix whose entries are all

1.

Proof. From the explicit formula (12) for (PS)k in Lemma 5 we see that the (i, j)th entry of the matrix∑
k≥0(PS)k is a one if i is even and j ∈ i+2N, or i is odd and j ∈ i−2N, and zero otherwise. Multiplication

by S from the left swaps every two consecutive rows, so that we obtain
(
S
∑
k≥0(PS)k

)
ij

= 1 if i is odd

and j ∈ i+ 1 + 2N, or if i is even and j ∈ i− 1− 2N, and 0 otherwise. Multiplication by BT from the left

and B from the right and addition of the identity then immediately gives E, the all-one matrix. �

4. Open Problems

In this section we state a few problems that, to our knowledge, are still unanswered in information

theory, but of great interest for applications and are indicative of the types of possible contributions for

control theory in this area.

Problem P1 — Quantification of Decoding Performance

One measure of the quality of a decoder is related to how many (incorrectly) received transmissions can

be decoded to an actual codeword. For an iterative decoder this can be phrased as: What set of inputs u

does the iterative decoder ultimately map to a codeword? In light of Theorem 4, one can reasonably restrict

this question to: What set of inputs u does the iterative decoder ultimately map to the all-zero codeword?

As an alternative to the above general problem, which essentially asks for a computation of a controllable

set, it would be of interest to know what fraction of the input space the iterative decoder maps to a valid

codeword (i.e., an element of NH). Since this fraction is clearly overbounded by the inverse of the number of

codewords, or 1/|NH |, (based on Theorem 4 and completely partitioning the input space) one might consider

the fitness measure

fH := lim
r→∞

|NH |λ(R0 ∩Br(0))
λ(Br(0))

, (17)

as a measure of how close BP performs to maximum likelihood decoding, where Br(0) denotes a ball of

radius r around the origin and λ the Lebesgue measure. Clearly, fH ∈ [0, 1] and ideally fH approaches 1.
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Problem P2 — Optimizing Parity-Check Matrices

A given code can be represented by different parity-check matrices. So it is natural to ask if a given H

can be modified to enlarge the region R0 or the fitness measure fH . A related question involves quantifying

the effects of cycles in the parity-check matrix, doubling factor nodes, adding linear combinations of existing

rows, etc.

Problem P3 — Control

Naturally, the question arises as to whether or not it is possible to improve the performance of the

iterative decoder via the judicious use of control. For example, is it possible (and computationally feasible)

to change the feedback loop in the dynamical system (5) in order to force faster convergence? Furthermore,

can we force faster convergence without shrinking the sets Rc? On the other hand, might it be possible to

trade off speed of convergence for enlarging the measure (17)?

Problem P4 — Performance Measures in Information Theory

Most tools used to analyze performance of LDPC codes rely on large-scale Monte-Carlo simulations; e.g.,

bit-error-rate plots, so-called density evolution, and ExIT charts all require the processing of a very large set

of random inputs u. Quantifying the fitness measure or similar quantities in terms of the so-called channel

parameter, e.g, by replacing the Lebesgue measure in (17) by a different measure may provide a way to

short-circuit lengthy Monte-Carlo runs.

5. Conclusions

The sum-product algorithm is in widespread use in signal processing applications from Kalman filtering to

expectation maximization. In particular, under the moniker of belief propagation (BP) it has revolutionized

error correction coding. Error correction codes have been demonstrated to perform within a fraction of a

decibel of the fundamental limit predicted by Shannon’s noisy coding theorem. However, these codes require

hundreds of hours for both design and validation, particularly as design is currently more art than science,

due in part to a paucity of results on the iterative processing of BP. Furthermore, the demonstrated high-

performance codes typically are so long (i.e., contain so many bits per codeword) that they are completely

impractical for most applications.

This work represents a first step in understanding the BP algorithm as a dynamical system with the aim

of developing principled design tools. Toward this end, we have shown how to cast the BP algorithm as a

dynamical system. Furthermore, we have considered a special case where the BP algorithm reduces to a

linear system. In this special case, we are then able to completely characterize the convergence behavior of

BP.
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We identified some of the open problems in information theory and cast them in control theoretic terms.

Control theory seems to be the natural setting to consider these type of problems and with its long history of

considering iterative discrete-time control systems, it is likely to make useful contributions to the information

theory field.

6. Acknowledgments
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A. Background on iterative decoding

This appendix provides a gentle introduction to the elements of coding theory necessary to further

investigate iterative decoding in the coding literature.

A deeper treatise of the material in this appendix can be found in the book [26]. Some example Matlab

code implementing material of this appendix as well as of Sections 2 and 3 is available online at [27].

Regarding the notation in what follows, both the control and the information theory communities have their

canonical uses for the letters X and Y , in both lower and upper case. To avoid introducing unnecessary

non-standard notation, we switch officially at this point to the information theory meaning of these letters.
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We start with an illustrative example of channel coding, i.e., how one might deliberately introduce

redundancy to be able to tell if a transmitted message has been corrupted during transmission over a channel.

Ultimately one would also like to be able to correct errors that have occurred during the transmission of a

message.

Example 2. The redundancy might be chosen such that certain constraints are satisfied, e.g., ISBN-13, the

international standard book number [15] consists of thirteen decimal digits d1d2 . . . d13, where the last digit

d13 is computed as

d13 ≡ −
12∑
i=1

widi mod 10 . (18)

Here the weights wi are given by

wi =

1 if i is odd

3 if i is even .

We could equivalently write (18) as a parity-check equation for all digits, i.e.,

13∑
i=1

widi ≡ 0 mod 10 . (19)

We observe that if two 13 digit numbers, d = d1 . . . d13 and c = c1 . . . c13, satisfy parity-check equation (19),

then also their sum and multiples (that is, element-wise, modulo 10) will satisfy this equation, due to its

linear nature. Given a 13 digit number, based on (19) we can tell whether or not this number is a valid ISBN,

so within certain limitations we are able to tell that the transmission of the number over a channel (e.g.,

scanning a bar code in this example) was successful or not. The set of solutions (i.e., the nullspace) of (19)

is called a code, and individual solutions are codewords. These are the very basics of linear parity-check

codes.

Here is the general channel coding problem: To transmit a message m, say a binary vector of length k, the

message m is augmented with a redundant vector r(m), and the vector x = (mT , r(m)T )T is transmitted.

Now the channel will corrupt the transmitted message x. The channel could be, e.g., transmission via

radio frequency, or the result of scanning a bar-code. The receiver then can use the augmented (redundant)

information to attempt to recover those parts of the message that have been lost or corrupted during

transmission. The block diagram in Figure 4 shows the usual digital communications setup. We will

consecutively consider each of the blocks in Fig. 4 in the sequel. The connection to the dynamical system

formulation (5) is made in Section A.7.
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A.1. Notation

To ease notation, for functions f : Fn2 → R, x 7→ f(x) we introduce the so-called not-sum or summary

operation, cf. [21], ∑
∼xi

f(x) :=
∑

x1,...,xi−1,xi+1,...,xn

f(x) , (20)

where x = (x1, . . . , xn)T . For a given set A the indicator function 1A is defined by

1A(x) =

1 if x ∈ A

0 otherwise .

A.2. Linear block codes and parity-check matrices

A binary linear parity-check code is defined through a weighted sum; i.e., solutions x = (x1, . . . , xn)T of

n∑
i=1

wixi = 0 , (21)

with wi, xi ∈ F2, the binary field. Again, linearity can easily be seen. In fact, the code defined by (21) is an

(n− 1)-dimensional vector subspace of Fn2 , provided at least one wi is nonzero.

A linear block code C of length n and rate R = k/n, k < n, is a vector subspace of dimension k in

Fn2 . The dimension k determines that we can choose k bits arbitrarily and the remaining n− k bits in each

codeword will be determined by the structure of the code; i.e, we can consider Fk2 as the vector space of

possible messages that we can send, before any parity-check information is appended. Clearly, there are

exactly 2k distinct possible messages.

The code C can be described as the nullspace of a parity-check matrix H ∈ F(n−k)×n
2 , so that C =

{c ∈ Fn2 : Hc = 0}, or by a generator-matrix G ∈ Fn×k2 , that maps message vectors to codewords; i.e.,

C = {Gm : m ∈ F k2 }.
In general, for every parity-check matrix there is no unique choice of generator matrix and vice versa.

However it is always possible to calculate a parity-check matrix from a generator matrix and vice versa [26,

p.36].

A binary low-density parity-check (LDPC) code is a binary linear block code C represented by a sparse

parity-check matrix H. This sparsity is crucial to the decoding described in Section A.6: The factor graph

corresponding to a sparse matrix H has only few edges, hence the message passing along those edges in

Section A.6 will involve fewer messages.

A.3. BPSK and a-priori likelihoods

Now that we have a code and codewords, we still have to transmit binary vectors over a noisy channel.

Take, e.g., the additive white Gaussian noise (AWGN) channel, a popular choice in information theory.
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First binary bits are mapped to channel symbols. For the AWGN channel the channel symbols are real

numbers, representing, e.g., the amplitude of a sent or received analogue signal at certain time instances.

Here we can use so-called binary phase shift keying (BPSK), which maps x ∈ Fn2 to x̃ ∈ Rn per

xi 7→ x̃i = (−1)xi . (22)

The channel then adds some noise realization, i.e., a sample drawn from a N (0, σ2) distribution to each

channel symbol, before the receiver sees it. So for each channel input x̃i ∈ R the channel output is yi = x̃i+z,

where z ∈ N (0, σ2). Here σ2 is a channel parameter, namely the variance of the channel noise, and is assumed

to be known at the receiver.

If σ2 is known on the receiver side, it is possible to compute pYi|Xi
(yi, xi), the probability density

corresponding to the cumulative conditional probability distribution (xi, yi) 7→ P (Yi≤yi,Xi=xi)
P (Xi=xi)

. Note that

we have switched to a probabilistic setting in order to reflect that the receiver side doesn’t know which

codeword has been sent. The receiver only knows that some realization of a random variable X has been

sent, where X takes values in the set of codewords. The ratio

ri :=
pYi|Xi

(yi, 0)
pYi|Xi

(yi, 1)
(23)

is called the a-priori likelihood ratio. Its computation requires knowledge of σ2. Under the assumption that

pXi
(1) = pXi

(0) the right hand side of (23) can be rewritten as

ri =
pXi|Yi

(0, yi)
pXi|Yi

(1, yi)
. (24)

A simple decoding approach assigns the binary-valued guess, x̂i, to 0 or 1 according to the likelihood (either

ri > 1 or ri < 1). By verifying whether Hx̂ = 0 or not, the receiver can see if the received vector is a

valid codeword. If the computed estimate x̂ is not a codeword, then some more involved decoding has to be

performed, to hopefully recover the transmitted codeword.

A.4. Maximum a-posteriori probability (MAP) decoding

The idea of the MAP decoding approach is to compute a-posteriori probabilities/likelihoods for every

bit and then choose that value for the bit which maximizes this probability. Exact MAP decoding is known

to be NP-complete.

Let us consider a simple example: A single parity check node. For the parity-check matrix

H =


1 1 0 1 0 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

 (25)

the first check-equation imposed is

x1 + x2 + x4 = 0 , xi ∈ F2 , (26)
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so that a valid codeword x has to satisfy equation (26).

We make the following assumptions:

A1 the channel is memoryless:

pY |X(y, x) =
∏
pYi|Xi

(yi, xi)

A2 for all y ∈ Rn and xi ∈ F2 we are given pYi|Xi
(yi, xi)

A3 uniform priors: pX(x1) = pX(x2) for x1, x2 ∈ C, pX(x) = 0 for x /∈ C

Bit-wise maximum a-posteriori (MAP) decoding chooses for each bit the following best estimate (cf. [26,

p.57]):

x̂i = arg maxxi∈F2
pXi|Y (xi, y) . (27)

By the law of total probability this is

= arg maxxi∈F2

∑
∼xi

pX|Y (x, y) ,

where the sum is taken over all xj , j 6= i, cf. (20). Application of Bayes’ rule yields

= arg maxxi∈F2

∑
∼xi

pY |X(y, x)
pX(x)
pY (y)

and using assumption A3 and the fact that pY (y) is a constant in this formula, we have

= arg maxxi∈F2

∑
∼xi

pY |X(y, x)1C(x)

= arg maxxi∈F2

∑
∼xi

∏
j

pYj |Xj
(yj , xj)1C(x) , (28)

where in the last step we have used assumption A1. The last expression (28) is efficiently computable using

the factor graph message-passing approach introduced in the following sections.

A.5. Factor graphs

The statement x ∈ C, or that x is a codeword, can be rewritten as

m∏
i=1

1N(hi)(x) = 1, (29)

where hi denotes the ith row of H and N(hi) is the nullspace defined by this row vector. Clearly a codeword

must be in the intersection of the nullspaces corresponding to the rows of the parity-check matrix.

In view of (29) it becomes clear why the graph defined in Section 2 is called factor graph: It describes

the correspondence between the factors and arguments in (29). A factor node is connected to a variable

node if and only if the value of that factor depends on the value of that variable.
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An example factor graph corresponding to the parity check matrix (25) is given in Figure 2. We will in

the sequel interchangeably use the symbol of the variable to denote the corresponding variable node, as well

as write hj or 1N(hj) for the corresponding factor node. We denote the variable nodes adjacent to a factor

node hj by xhj
. For example, in Figure 2, xh1 = {x1, x2, x4}.

A.6. Message-passing

When we try to explicitly compute the marginalizations

Si(xi) :=
∑
∼xi

∏
pYj |Xj

(yj , xj)1C(x) , (30)

in (28) for all i = 1, . . . , n, by employing the distributive law, it turns out that certain intermediate terms

keep reappearing, which are of the same shape as (30), but the sums are taken over fewer terms and products

contain fewer factors. An efficient implementation would have to try to benefit from this observation.

Example 3. In order to simplify the notation in what follows, we define pi(xi) := pXi|Yi
(xi, yi). Taking the

parity-check matrix (25) as an example, we can compute

S1(x1) =
∑
∼x1

∏
j

pYj |Xj
(yj , xj)1C(x)

=
∑
∼x1

∏
j

pj(xj)
∏
k

1N(hk)(xhk
)

= p1(x1)
∑
x2

p2(x2)

[∑
x4

p4(x4)1N(h1)(xh1)

·
(∑
x3,x6

p3(x3)p6(x6)1N(h2)(xh2)

)

·
(∑
x5,x7

p5(x5)p7(x7)1N(h3)(xh3)

)]
. (31)

Observe that 1C(x) =
∏
j 1N(hj)(xhj ). Furthermore, note that the ordering of the summation in the final

equation is in some sense arbitrary; i.e., we could just as easily have summed over x3 before x4. However,

as we will shortly observe, the above factorization corresponds to ‘messages’, or calculations, exchanged by

the variable and factor nodes along the edges of the factor graph.

The expression for S2(x2) is almost the same as that for S1(x1), namely

S2(x2) = p2(x2)
∑
x1

p1(x1)

[∑
x4

p4(x4)1N(h1)(xh1)

·
(∑
x3,x6

p3(x3)p6(x6)1N(h2)(xh2)

)

·
(∑
x5,x7

p5(x5)p7(x7)1N(h3)(xh3)

)]
.
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Clearly the sums over x5, x7 and x3, x6 would only have to be computed once. Calculating the remaining

marginalizations, we would observe other similar repeated expressions. Especially for very high dimensional

but sparse matrices H, this observation leads to an efficient implementation to compute (or in general

approximate) the functions Si.

It turns out that if the factor graph defined by H is a tree, then the functions Si can be computed iteratively,

according to the following message-passing rules.

Initially, each variable node xi sends the message (that is, a function F2 → R) pi(·) to all adjacent factor

nodes. From now on we write µxi→hj for the messages sent from variable node xi to factor node hj and

µhj→xi
for the message in the opposite direction.

Then the following two steps are iterated. First update the factor-to-variable messages according to

µhj→xi
(xi) =

∑
xk: k 6=i

xk adjacent to hj

1N(hj)(xhj
)
∏
l 6=i:

xl adjacent to hj

µxl→hj
(xl) . (32)

Then update the variable-to-factor messages as

µxi→hj
(xi) = pi(xi) ·

∏
hl adjacent to xi

l 6=j

µhl→xi
(xi) . (33)

The intermediate marginalization after every iteration is given by

S̃i(z) = pi(z) ·
∏

hl adjacent to xi

µhj→xi
(z) . (34)

Example 4. Returning to Example 3, we note that the nodes adjacent to h2 are x3, x4, and x6; i.e.,

xh2 = {x3, x4, x6}. Consequently, the message µh2→x4(x4) from h2 to x4 sums over x3 and x6 as

µh2→x4(x4) =
∑
x3,x6

p3(x3)p6(x6)1N(h2)(xh2)

after receiving the initial messages

µx3→h2(z) = p3(z) and µx6→h2(z) = p6(z).

Then x4 sends

µx4→h1(x4) = p4(x4) · µh2→x4(x4) · µh3→x4(x4)

= p4(x4) ·
∑
x3,x6

p3(x3)p6(x6)1N(h2)(xh2)

·
∑
x5,x7

p5(x5)p7(x7)1N(h3)(xh3)
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to h1. In the next iteration h1 in turn sends

µh1→x1(x1) =
∑
x2

p2(x2)

[∑
x4

p4(x4)1N(h1)(xh1)

·
(∑
x3,x6

p3(x3)p6(x6)1N(h2)(xh2)

)

·
(∑
x5,x7

p5(x5)p7(x7)1N(h3)(xh3)

)]
to x1. At this stage we obtain S1 as

S1(x1) = S̃1(x1) = p1(x1) · µh1→x1(x1) .

Observe that from this point on the message-updating rules do not alter the messages any more. We might say

that the algorithm has converged. Furthermore, note that the messages correspond precisely to the particular

order of summation in (31).

In general the factor graph is not a tree, and this iterative procedure might not converge in the sense

that messages become constant after some iteration. Nevertheless this algorithm is used very successfully for

decoding even in the presence of cycles in the graph. A common stopping criterion is that the intermediate

marginalizations result in a codeword, which can be efficiently tested using the parity-check matrix.

The update rules (32),(33) also appear in other, more general, marginalization problems and gave rise

to the name sum-product algorithm, due to the sum over products in (32). In the case of binary probability

distributions the sum-product algorithm is also commonly referred to as belief propagation.

A.7. LLR reformulation yielding atanh-formula

Finally we show how one obtains the formulas (2),(3) from the update rules (32),(33). The basic idea is

to represent each message µ, which —up to scaling— is a probability distribution, by a single number. This

approach reduces the amount of storage needed for each message, and, if one chooses the representation

carefully, also simplifies the message-update rules. Each message can be though of as a 2-vector, µ =

(µ(0), µ(1)), so we might define the log-likelihood ratio (LLR) of µ as

lµ = log
µ(0)
µ(1)

. (35)

If we now rewrite the message updating rules (32),(33) in terms of LLRs, we obtain from (33),

lµxi→hj
= log

µxi→hj
(0)

µxi→hj
(1)

(33)
= log

[
pi(0)
pi(1)

·
∏

hl adjacent to xi
l 6=j

µhl→xi(0)
µhl→xi

(1)

]

= lµxi→hj
+
∑

lµhl→xi
, (36)
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which leads to the operator P in (5).

The derivation of

lµhj→xi
= 2 atanh

∏
k 6=i:

xk adjacent to hj

tanh
lµxk→hj

2 (37)

from (32) is slightly more involved and details are omitted due to space constraints. However, the derivation

can be found in [26, pp. 58f]. The main ingredients are the following: Consider a factor node of degree

J + 1. For xi = 0 in (32), the sum ∑
xk: k 6=i

1N(hj)(xhj
) · some product

can be reduced to a summation over those xk, that add up to 0 (in F2), and similarly for xi = 1. Then the

identity
I∏
i=1

(ri + 1) +
I∏
i=1

(ri − 1) = 2
∑

x1,...,xI :
x1+...+xI=0

I∏
i=1

r(1−xi)

leads to

lµhj→xi
= log

1 +
∏
i
ri−1
ri+1

1−∏i
ri−1
ri+1

,

where ri = µhj→xi(0)/µhj→xi(1). Now using the relations l = log r and r−1
r+1 = tanh l

2 , formula (37) follows,

leading to the operator S in the dynamical system formulation (5). The input u in (5) is the vector of

log-likelihood ratios ui = log pYi|Xi
(yi,0)

pYi|Xi
(yi,1)

.

We see that instead of the computationally costly sum of products in (32) and a product in (33), the

computational burden reduces essentially to one product in (37) and one sum in (36), as in practice the

hyperbolic tangent and its inverse could be implemented using lookup tables.

Instead of LLRs, other single-number representations of messages are possible, leading to further equiv-

alent formulations of the BP algorithm [21].

A.8. Turbo estimation: Non-constant inputs

Our last point is to argue why non-constant inputs to our system (5) are worthwhile to consider:

In Section A.3 we have assumed that the receiver would know σ2. In practice that is not the case and

the receiver will have to make a guess σ̂2 for σ2. This guessing is called channel estimation. To make a good

guess, the receiver might employ information obtained from the decoder after, say, a few iterations, but

possibly before a valid codeword has been found. The receiver might then utilize this additional knowledge

in the estimation of the channel parameter. Conversely, the updated knowledge of the channel parameter

changes the input to the decoder. At this point the decoder could either restart, or continue but with

changed probabilities pi, i.e., we have non-constant inputs. This procedure is termed turbo-estimation [25]

(turbo as in turbo charger in a car, where the exhaust warms up the air fed into the engine), and ongoing

research indicates that it improves the decoding performance even further.
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Figure 1: Block diagram of the BP algorithm as a dynamical system. The only nonlinear component is the operator S.
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Figure 2: A factor graph.
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Figure 3: Dead-beat convergence of the per bit (output) log-likelihood ratios (LLRs) yi(t) (t = 0, . . . , 10) to the sum of the

input LLRs ui for Example 1.
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Figure 4: Channel coding essentials.
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